佛山(云浮)产业转移工业园区域 气候可行性论证技术报告

云浮市气象公共服务中心 2020年12月

佛山(云浮)产业转移工业园区域 气候可行性论证技术报告

委 托 单 位: 佛山(云浮)产业转移工业园管理委员会

承 担 单 位: 云浮市气象公共服务中心

单位负责人:谭雪芳

项目负责人:叶树春(高级工程师)

项 目 审 核 人:胡端英(高级工程师)

主要参加人员: 陈梓浩(工程师)

张 银(助理工程师)

林婉莹 (助理工程师)

莫贤清(高级工程师)

陈元哲(助理工程师)

曾繁威(工程师)

目录

1	概述		1
	1.1	工作目的与内容	1
	1.2	气象站概况	3
	1.3	分析资料说明	5
2	编制依	₹据	6
3	园区大	\(气环流特征	7
4	园区气	候特征分析	8
	4. 1	气压	8
	4.2	气温	9
	4.3	降水	10
	4.4	风	12
	4.5	湿度	13
	4.6	雾	14
	4.7	日照	15
	4.8	霜冻	16
		雷暴	
5	园区历	史台风和大风统计特性	18
	5. 1	历史台风统计资料来源	18
	5. 2	台风统计特性	19
	5. 3	大风统计特性	29
6	暴雨强	B度公式计算	30
	6. 1	代表站的确定	31
	6. 2	资料来源	31
	6.3	暴雨强度公式推算	
		6.3.1 暴雨强度公式解释	
		6.3.2 暴雨强度公式推算步骤	
		6.3.3 暴雨强度公式精度检验	
		6.3.4 暴雨强度计算图表	
7			
		项目气候可行性	
		园区气象要素统计特性	
		园区历史热带气旋统计特性	
		暴雨强度公式	
8		害防御措施与建议	
		暴雨灾害应对措施	
		大风灾害应对措施	
		高温灾害应对措施	
		雷电灾害应对措施	
9	专家评	审意见	58

1 概述

1.1工作目的与内容

佛山(云浮)产业转移工业园思劳工业集聚发展规划位于云浮市云城区思劳镇,东起东部快线,南抵三茂铁路,西至榃满村,北临北部山脉,地理中心位置坐标为: N22.95670°、E112.235126°,规划总面积约13.86平方公里,是以山水田园风貌为特色,以园镇互动发展为途径,以新能源汽车及其配件制造、家具制造、医疗器械制造、绿色建材(包含不使用VOCs物料的绿色石材生产)、新材料、航空航天器制造(无人机)及其他绿色环保产业为主导的工业集聚发展区,符合广东省和云浮市的发展趋势,有利于提升云浮经济水平,节约资源、改善区域环境;有利于加强基础设施建设,完善投资环境,提高区域综合竞争力。园区位置见图1-1。

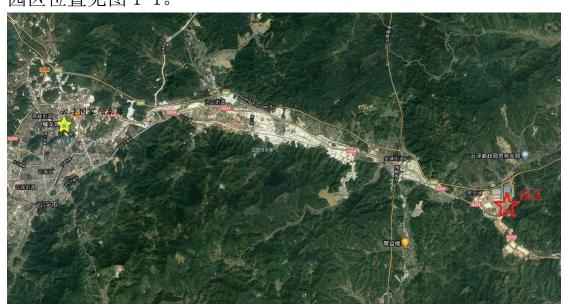


图 1-1 气象站与园区的相对位置

本项目气候可行性论证技术报告涉及的工程范围包括佛山(云浮)产业转移工业园及其配套附属工程。园区区域属亚热带季风气候区,受低纬度热带天气系统和中高纬度天气系统的交替影响,天气气候复杂多变,是台风、暴雨、强对流等气象灾害事件高发区,而台风、强对流、雷暴、暴雨、高温等气象灾害将严重影响园区工程设计、施工及建成后的安全运营。同时随着全球气候变化的加剧,极端天气气候事件、特别是严重影响人们生命财产安全的危险天气如百年一遇的特大暴雨都将越来越多,这些灾害一旦发生,其可能造成的危害和损失则往往是极其惨重的。因此必须高度重视,做好项目前期设计、建设及运行的气候可行性论证工作,分析和评估该地区气候灾害的类型、规模及危害程度,对气候环境的优劣作出评价,为项目的设计和建设提供防灾减灾依据。

1.2气象站概况

图 1-2 国家气象站与园区的相对位置

位于园区西偏北的云浮国家气象站是距离园区最近的国家 气象站。云浮地面气象观测站建于 1965 年 1 月 1 日,为国家一 般气象站,前后经历 1 次迁站,发生在 1988 年,由云浮县云城 镇西南郊至现址云浮市云城区兴云东路春岗山,其历史沿革见表 1-1。

云浮国家气象站建站 1965~2007 年为定时(3次/d)观测, 2008年至今为逐时(24次/d)观测。其记录方式:定时测风记录正点前 2分钟平均风速、最多风向,最大值取自 4次观测值; 逐时测风记录正点前 10 分钟平均风速和最多风向,最大值从滑动 10 分钟平均风速中选出。

图 1-3 云浮国家气象观测站现场照片

表 1-1 云浮国家气象观测站沿革

时间	纬度	经度	海拔高度(m)	风仪高度(m)	地址	地理环境
19660119~	22° 55′	112° 02′	73.8	10. 9	云浮县云城镇西	郊区
19871231					南郊	
19880101~	22° 56′	112° 03′	105. 3	6. 5	云浮市云城区兴	市区
20051231					云东路春岗山	山顶
20060101~	22° 56′	112° 03′	105. 3	11. 1	云浮市云城区兴	市区
20061231					云东路春岗山	山顶
20070101~	22° 56′	112° 03′	101.8	10.8	云浮市云城区兴	市区
20151231					云东路春岗山	山顶
20160101~	22° 56′	112° 03′	101. 4	10.8	云浮市云城区兴	市区
至今					云东路春岗山	山顶

为评估云浮气象站对工程园区的代表性,对气象站分别进行

一致性、代表性和可靠性分析:

代表性分析:云浮国家气象站位于云浮市区中心位置,与园区位于同一气候区,平均气候状况相似,其区域代表性较好,可满足项目气候论证的要求。

一致性分析:数据的一致性主要是考察气象数据历史序列是 否连续、一致。1980年以后云浮国家气象站只迁过一次站,于 1988年1月1日由云浮县云城镇西南郊迁至云浮县云城镇春岗 山,迁站的距离较近,新站距离旧站约 2.5km,所有观测均根据 《地面气象观测规范》的要求进行,资料的一致性较好。

可靠性分析:气象站仪器观测设备安装前根据《地面气象观测规范》的要求,经过国家质量监督部门的严格检定;观测资料经过省级气象业务部门的严格审核,因此观测设备和观测资料的可靠性均满足国家相关规范的规定和要求。

综上所述,选择云浮国家气象站作为本项目的参证气象站。

1.3 分析资料说明

云浮国家气象站:常规气象要素资料分析时段: 1989 年 1 月 1 日~2018 年 12 月 31 日;逐时风观测资料分析时段: 1989 年 1 月 1 日~2018 年 12 月 31 日。

雨量资料分析时段:常规雨量统计时段为1989年1月1日~2018年12月31日;暴雨强度公式计算的资料统计时段为1980年1月1日~2015年12月31日。

2 编制依据

- (1)《地面气象观测规范总则》(GBT 35221-2017);
- (2)《地面气象观测规范自动观测》(GBT 35237-2017);
- (3)《气象资料的整理和统计办法》,气象出版社,1984年7月:
- (4)《全国地面气候资料(1961—1990)统计方法》,国家 气象中心,1990年1月;
- (5)《CMA-STI 热带气旋最佳路径数据集》,中国气象局发布;
 - (6)《广东省各类主要灾害性天气标准》,中国气象局发布;
 - (1)《室外排水设计规范》(GB50014-2006, 2014版);
 - (7)《城市排水工程设计——暴雨强度公式编制技术指南》;
- (8)《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》;
 - (9)《给水排水设计手册(第5册)城镇排水》(2003版); (12)《地面气象观测规范》(气象出版社 2007年版);
 - (10)《地面气候资料 30 年整编常规项目及其统计方法》 (QX/T22-2004);
- (11)《气象资料统计规定》,气象出版社,1984年7月出版;
- (12) 佛山(云浮)产业转移工业园气候可行性论证技术服务合同。

3 园区大气环流特征

佛山(云浮)产业转移工业园位于广东省云浮市云城区,属 北回归线附近的低纬度地区,地处亚热带,属亚热带季风气候区, 冬半年受极地冷高压脊控制,盛行东北季风,天气较为干冷;夏 半年则为季风低压、热带气旋所影响,盛行东南季风,高温多雨。 降水量的年内分配很不均匀,其中汛期的4~9月约占全年降水 量的70%以上,降水多属锋面雨和热带气旋雨,前汛期(6月以前) 以锋面雨为主,降水范围广,降水量大;后汛期以台风雨为主, 降水强度大。季风盛行,年内风向随季节转换明显。每年的夏、 秋季常出现强对流天气和受热带气旋的影响伴有暴雨天气过程, 对工、农业生产及人民生命财产安全构成危害。而冬季则受北方 强冷空气的侵袭,会出现短暂的霜冻和结冰现象。

春季白昼渐长,太阳倾角逐渐增大,地面接收的太阳辐射总量也开始增多。在季风显著的气候区中,春季是从冬半年到夏半年的过渡季节,影响园区的冷空气势力开始减弱,虽也有较明显的冷空气,但东移较快,多受弱变性冷高压脊、静止锋、低槽等天气系统控制。

夏季为季风的盛行期。高层副热带西风已撤离广东上空,而由热带东风所取代,并稳定控制。夏季在副热带高压的稳定控制下,常出现炎热天气,是极端最高气温出现的主要时期。

秋季是高层南亚高压迅速撤离,500 百帕副热带高压的候平均位置虽已南落至北纬22 度至18度,地面上锋面的候平均位置已越过南岭,冷高压迅速南下并控制园区。

冬季是北方蒙古冷高压的鼎盛时期,冬季风力强大。园区冬季经常处于干冷气流的控制下,气温为全年最低,降水稀少,但广东大陆大部分地区位于南亚热带,冬季仍较温暖。

4园区气候特征分析

根据项目参证气象站—云浮国家气象站历史资料进行统计分析,年平均气压为 1001. 4hPa,年平均气温 21.8℃,年平均降水量为 1617. 3mm,年平均风速为 1. 1m/s,年平均相对湿度为 79%,年平均雾日是 27. 4d,年平均日照时数为 1647. 0h,年平均霜冻日数为 3. 2d,年平均雷暴日数为 72d。

4.1 气压

年平均气压为 1001. 4hPa, 12 月平均气压最高为 1009. 4hPa, 7 和 8 月平均气压最低为 993. 7hPa。极端最高气压为 1028. 2hPa, 出现在 2016 年 1 月 24 日;极端最低气压为 970. 0hPa,出现在 2018 年 9 月 16 日。

表 4-1 云浮国家气象站累年各月气压要素表

11 12 平均 1009 1 1007 1 1004 4 1000.8 997 4 994 0 993 7 993 7 997 7 1003 3 1006 6 1009 4 1001 4 1002.1 1024.1 1028.2 极端最高 1017.1 1016.0 极端最低 995.5 987.0 978.5 980.5 972.3 970.0 997.2 997.0 970.0

(单位: hPa)

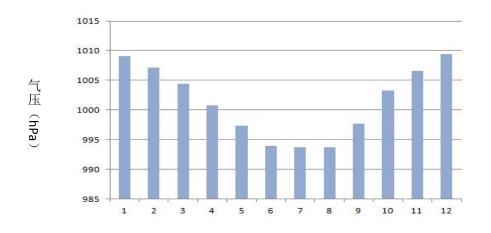


图 4-1 云浮国家气象站累年各月平均气压直方图

4.2 气温

因地处低纬度的亚热带季风区,热量丰富,日照充足,降水量大并集中,作物种植四季皆宜。年平均气温为 21.8℃,受海洋气温调节,一年四季气温变化不大。据历年气象资料极端气温统计,极端最高气温为 39.1℃,极端最低气温为-1.3℃。日最高气温≥35℃日数最早出现在 4月,主要出现在 6-9月,占全年高温日数的 94%,其中 7月的高温日数最多,平均为 9.5d,占该月总日数的 31%。

表 4-2 云浮国家气象站累年各月气温要素表

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均气温	13.0	14.9	17.9	22.3	25.6	27.6	28.2	28.1	26.6	23.5	19.1	14.7	21.8
平均最高气温	15.7	20.8	20.1	24.4	27.5	28.9	29.6	29.8	28.2	25.3	21.0	16.6	24.0
平均最低气温	9.1	10.7	15.2	19.2	23.9	26.2	27.0	26.8	24.7	21.5	16.9	11.8	19.4
极端最高气温	28.7	32.6	33.0	35.0	36.7	37.5	38.3	39.1	38.1	35.1	33.3	29.6	39.1
极端最高气温出现年份	1998	2009	2000	1998	2018	1990	1998	1998	1990	2000	1989	2001	1998
极端最低气温	1.0	1.3	4.3	8.6	13.3	18.3	20.9	21.9	15.1	9.7	3.8	-1.3	-1.3
极端最低气温出现年份	2005	2018	2005	1996	1990	1992	1992	1998	1997	2010	2009	1999	1999
≥35℃日数	0	0	0	2	45	159	285	249	62	2	0	0	804

(单位: ℃)

4.3 降水

多年平均年降水量为 1617. 3mm。4 至 9 月为集中降水期,平均降水量为 1275. 0mm,占全年总雨量的 78. 8%。前汛期一般始于4 月,后汛期在 7 月至 9 月。降水最多的年份为 2016 年,年降水量为 2328. 8mm,降水最少的年份为 2003 年,年降水量为 1093. 9mm。最大日降水量为 227. 4mm,出现在 2018 年 9 月 17 日。最大连续降水为 557. 9mm,持续 19d,止日为 1989 年 6 月 19 日。最长连续降水日数为 39 天,连续降水量为 355. 7mm,止日为 1997年 7 月 22 日。小雨、中雨、大雨和暴雨的 24h 降总量分别为 5. 0~9. 9mm、10. 0~24. 9mm、25~49. 9mm 和≥50. 0mm。累年年平均小雨日数、中雨日数、大雨日数和暴雨日数分别为 22. 6d、27. 3d、13. 1d 和 6. 0d。

表 4-3 云浮国家气象站累年各月降水要素表(单位:mm)

項目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均													
降水	59.1	49.3	82.3	168.1	229.2	242.6	211	235.3	181.2	66.8	51.4	40.9	1617.3
最多													
降水	317.9	202.7	229.6	357.9	544.5	550.3	456.76	434.1	449.2	259.5	235	228.6	2328.8
最多													
降水	2016	1990	2014	2012	1989	2008	1994	2016	2018	1995	1990	2013	2016
出现	2016	1990	2014	2012	1909	2008	1994	2016	2016	1995	1990	2015	2016
年份													
最少	0	1.1	11.9	50	43.2	112	103.7	26.3	29.2	0	0.3	0	1093.9
降水	0	1.1	11.9	30	43.2	112	103.7	20.3	29.2	0	0.3	0	1093.9
最少													
降水													
出现	2014	1999	2010	2003	2002	2000	1998	1990	2004	2005	2010	1990	2003
年份													

B. +-													
最大													
日降	114.7	50.2	132.9	154.7	116.8	167.6	128	144.4	227.4	125.1	82.1	126	227.4
水量													
最大													
日 降	2016	2001-	2014-	2009-	2004-5	2018-6	2001-7	2006-	2018-9	2015-10	2016-11	2013-12	2018-9
水 量													
出日	-1-28	2-25	3-30	4-25	-13	-8	-2	84	-17	-4	-21	-16	-17
期													
最大													
连续	216.8	157.4	197.5	213.9	383.7	557.9	355.7	299.1	315.4	202.8	196	228.6	557.9
降水													
最大													
连续													
降水	6	10	4	13	12	19	39	19	3	4	7	6	19
持续													
日数													
最大													
连续	2016	4000	2011	400=	4000 #	4000 6	400==	4004			*****		4000 6
降水	2016-	1990-	2014-	1997-	1989-5	1989-6	1997-7	1994-	2018-9	2015-10	2016-11	2013-12	1989-6
止日	1-31	2-28	3-31	4-15	-31	-19	-22	8-1	-18	-6	-26	-17	-19
最长													
连续													
降水	11	15	14	16	15	27	39	19	16	8	8	8	39
日数													
最长													
连续										149.9			
降水													
的降			53.7							73			
	50	73.8	77.4	198.5	166.4	313.7	355.7	299.1	239.3	100.1	82.9	39.1	355.7
水量													
最长										1995-10			
连续			2000							-7			
			2000-							1997-10			
降水	2010	1005	3-3	1000	1000 5	2000 6	1007.7	1004	2001.0	-19	2012 11	2002.12	1007.7
止日	2010-	1995-	2009-	1989-	1998-5	2008-6	1997-7	1994-	2001-9	2002-10	2012-11	2002-12	1997-7
	1-8	2-27	3-13	4-18	-25	-20	-22	8-1	-9	-1	-30	-4	-22
小 雨	1.5	1.4	2	2	2.3	3.9	2.5	2.3	1.7	1.1	0.9	1	22.6
日数	1.5	1.4				J.5			1.,	1.1	0.5		22.0
中雨	0.9	1	1.4	2.9	3.8	4.4	3.8	4	2.4	0.8	1.1	0.9	273
日数	0.9	1	1.4	2.9	3.0	4.4	3.0	4	2.4	0.0	1.1	0.9	213
大雨			2.5	4.2				2			2.2	2.2	43.6
日数	0.4	0.4	0.6	1.3	2.1	2	2	2	1.4	0.4	0.2	0.3	13.1
暴雨									2.5				
日数	0.1	0	0.2	0.7	0.9	0.8	0.7	1.1	0.8	0.3	0.3	0	6

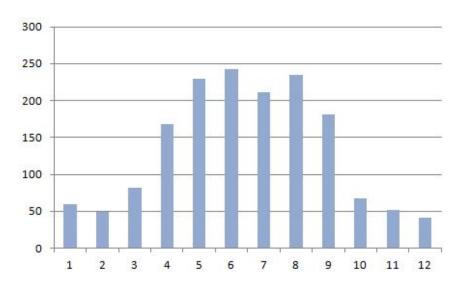


图 4-2 云浮国家气象站累年各月平均降水量直方图

4.4 风

全年主导风向为东风和东南东风,累年平均风速为 1. 1m/s, 最大 10min 平均风速为 17. 3m/s。最大极大风为 28. 4m/s,出现在 2017 年 8 月 23 日。

表 4-4 云浮国家气象站累年各月风况

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均风速	1.1	0.9	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.1
最大风速	8.3	7.1	11.7	14.0	12.3	11.0	17.3	14.6	13.3	9.1	9.4	7.2	7.3
最大风速对应的风向	NW	N	NNW	NNW	NNW	E	ENE	ENE	NNE	ENE	W	N	ENE
最大风速出现年份	1991	2010	2010	2007	1990	1993	1989	2017	1990	2015	2008	2012	1989

(单位: m/s)

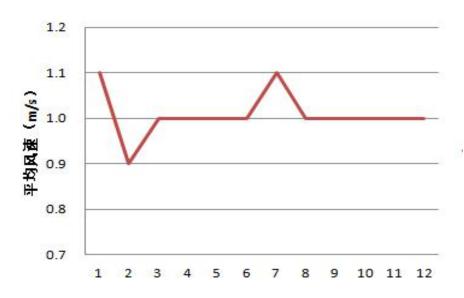


图 4-3 云浮国家气象站累年各月平均风速曲线图

图 4-4 云浮国家气象站累年各月最大 10min 平均风速曲线图

4.5 湿度

年平均相对湿度为 79%。一年中相对湿度受季风环流变化的 影响。秋、冬季受来自北方的干燥大陆性气流影响,相对湿度较 小;春、夏季受暖湿的海洋性气流影响,相对湿度较大。历年平 均相对湿度最大月是 4 月(平均为 83%), 最小月出现在 12 月(平均为 73%), 日最小相对湿度为 11% (2014年1月22日)。

表 4-5 云浮国家气象站累年相对湿度要素表

(<u>È</u>	皀	觉	:	%)

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均	78	80	82	83	82	82	80	81	80	75	74	73	79
极端最低	11	14	13	17	13	25	27	25	22	13	14	14	11
极端最低出现年份	2014	2007	2008	2011	2007	2009	2008	1990	2000	2013	2007	2008	2014
												2010	

图 4-5 云浮国家气象站累年各月平均相对湿度直方图

4.6 雾

凡是大气中因悬浮的水汽凝结,能见度低于1千米时,气象 学称这种天气现象为雾。它影响水平和垂直能见度。大雾是较为 常见的灾害性天气之一,它具有发生机率高、影响范围广、危害

程度大等特点。

雾日在累年各月均有出现,年平均雾日是 27.4d;其中 12月至次年 4月比较集中,3月份最多为 5.8d。云浮累年各月最多雾日见表 4-6,最多为 15d,出现在 2000年 4月和 2001年 4月,其次为 12d,出现在 1998年 4月、2003年 2月和 2012年 4月。

表 4-6 云浮国家气象站累年各月雾日

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均	3.4	3.1	5.8	4.7	1.9	1	0.8	0.8	1.2	1.1	1.6	2.0	27.4
最多雾日	10	12	12	15	6	5	6	5	5	6	7	9	53
最多雾日出现	2010	2003	1998	2000	2001	1994	2000	1994	2002	1997	1993	2000	
年份			2012	2001		2018							

(单位: d)

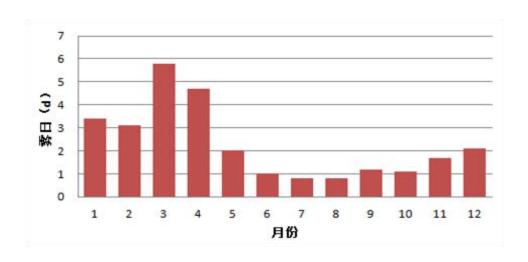


图 4-6 云浮国家气象站累年各月平均雾日

4.7 日照

云浮市地处低纬,光照较充足。累年平均日照时数为1647.0h,其中7月日照时数最多,日照时数为205.2h,3月日

照时数最少,日照时数为 64. 4h。年日照时数最多的年份为 2003年,年日照时数为 1961. 3h,年日照时数最少的年份为 1997年,年日照时数为 1318. 1h。由于广东春季受海洋暖湿气流影响时间较长,容易形成持续的阴雨天气,因此春季的日照时数较低。

表 4-7 云浮国家气象站累年各月日照时数

(单位: d)

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
日照时数	88.4	77.7	64.4	85.9	133.5	160.9	205.2	196.7	175.7	183.9	145.5	129.2	1647.0

4.8 霜冻

地面出现白霜,或虽然没有结霜,但地面温度降到0℃以下,称为黑霜。白霜和黑霜都会造成农作物冻害,统称霜冻。累年平均霜冻日数为3.2d,分别出现在11月、12月、1月和2月。1993年(12月和1月各5d)和2014年(12月、1月和2月各出现2d、7d和1d)出现霜冻日数最多,均为10d。

表 4-8 云浮国家气象站累年各月平均霜冻日数

(单位: d)

項目	1	2	3	4	5	6	7	8	9	10	11	12	年
霜冻日数	1.5	0.3	0	0	0	0	0	0	0	0	0.1	1.3	3.2

4.9 雷暴

雷暴是积雨云中、云间或云地之间产生的放电现象,按测站 闻雷记录。若只有闪电没有雷声因积雨云体较远,测站不记雷暴。

雷暴在一年中各月都有发生,年平均雷暴日数为72d,年雷暴日数最多的年份为1998年,雷暴日数为114天,年雷暴日数最少的年份为2009年,雷暴日数为38天。4月雷暴逐渐增多,7-8月达到高峰,从10月开始,雷暴天气明显减少。月雷暴日数最高值为23d,出现在1988年8月。

表 4-9 云浮国家气象站累年各月雷暴日数

(单位:	d)

项目	1	2	3	4	5	6	7	8	9	10	11	12	年
平均	0.1	0.6	2.6	6.4	8.7	10.7	11.8	11.8	5.8	1	0.2	0.1	64.8
最多	2	6	11	14	18	18	22	22	14	7	3	1	
最多雷暴出现年份	2001	1990	2013	1992 1997	1993	1993 2006	1994	1994 2007	2010	1997	2006	1989 1992	
				2012		2007		2010				2002	

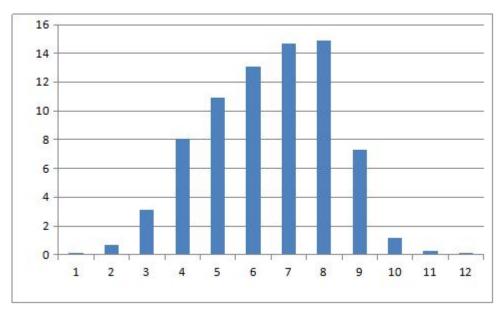


图 4-7 云浮国家气象站累年各月平均雷暴日数图

5园区历史台风和大风统计特性

5.1 历史台风统计资料来源

台风是发生在西太平洋和南海区域热带洋面上的一种强烈的气旋性涡旋,常伴有大风、暴雨等极为强烈的天气,是一种破坏性极强的灾害性天气系统。一个发展成熟的台风,圆形涡旋半径一般为500km~1000km,高度可达15km~20km。有研究表明,台风最大风速半径(台风最大风速处距其中心距离)约15-90km,台风发展过程中最大风速半径会不断变化,不同特性、强度的台风,其最大风速半径也会有所不同。

据此设定以佛山(云浮)产业转移工业园位置为中心,300km 为半径的圆形区域为台风影响评估区域(见图 5-1),凡台风中 心经过该区域,均可能影响项目工程区域。台风资料取自中国气 象局发布的1949-2018年《CMA-STI 热带气旋最佳路径数据集》, 该路径集数据时间间隔为6h,其中风速为2min平均风速。

图 5-1 热带气旋影响区域示意图

5.2 台风统计特性

热带气旋是危害最大的灾害性天气,热带气旋是产生于热带海洋面上的强大而深厚的大气旋涡,其半径可达数百公里,经过的路径周围地区常有狂风暴雨。自 1989 年起,我国采用国际热带气旋名称和等级划分标准,按其中心最大风力等级从小到大划分为:

热带低压: 中心附近最大平均风力 6~7级(10.8~17.1m/s);

热带风暴:中心附近最大平均风力8~9级(17.2~24.4m/s);

强热带风暴:中心附近最大平均风力 10~11 级(24.5~

32.6 m/s):

台风: 中心附近最大平均风力 12~13 级 (32.7~41.4m/s); 强台风: 中心附近最大平均风力 14~15 级 (41.5~50.9m/s);

超强台风:中心附近最大平均风力 16 级以上(≥51.0m/s); 本报告中统称为热带气旋,达到台风量级的称为台风。

1949-2018 年 70 年间中心经过评估区域的热带气旋共 231 个,年平均为 3.3 个;最多的 1961 和 1993 年有 7 个热带气旋中心经过该区域;最少的 1956、2005 年没有热带气旋中心经过该区域。在这 231 个热带气旋样本中,涵盖了从热带低压到超强台风的所有等级热带气旋,其中热带低压 25 个 (10.8%)、热带风暴 27 个 (11.7%)、强热带风暴 60 个 (26%)、台风 54 个 (23.4%)、强台风 26 个 (11.3%)、超强台风 39 个 (16.9%)。广东沿海的热带气旋主要出现在每年的 4~11 月份,进入评估区域内的热带气旋样本主要集中在 6~10 月份,超过了总数的 93.5%。按广东前后汛期时间划分,前汛期(4~6 月)的热带气旋频率占 15.6%,后汛期(7~9 月)的热带气旋频率为 71.9%。图 5-2 给出各年的热带气旋个数,图 5-3 给出累年平均各月的热带气旋个数。

各个台风生命史历程中,极端最低气压为890hPa(5413号超强台风),台风过程极端最大2min平均风速为95m/s(6420号超强台风)。

在评估区域内的台风极端最低气压为 935hPa (9617 号强台

风和 1714 号超强台风), 台风极端最大 2min 平均风速为 52m/s (1714 号超强台风), 各热带气旋样本参数详见表 5-1。

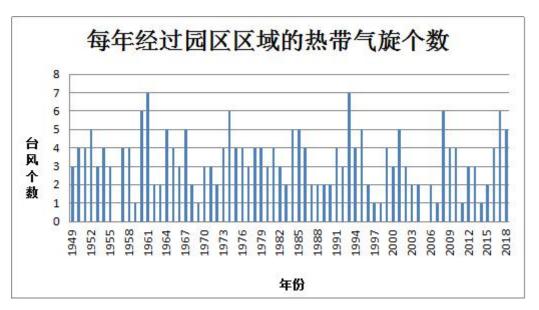


图 5-2 每年经过园区区域的热带气旋个数

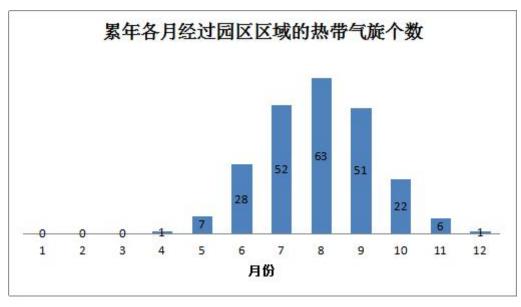


图 5-3 累年各月经过工程区域的热带气旋个数

表 5-1 1949-2018 年进入评估区域的热带气旋样本

						生命让	过程	评估区域内		
序 号	年份	国际编号	月份	り、カール・カール・カール・カール・カール・カール・カール・カール・カール・カール・	等 级	最低气 压(hPa)	最 大 2min 风 速 (m/s)	最低气压 (hPa)	最 大 2min 风 速 (m/s)	
1	1949	4904	7	10	强热带风暴	984	30	998	15	
2	1949	4911	8	8	热带低压	998	12	998	9	
3	1949	4919	9	7	强热带风暴	990	30	990	30	
4	1950	5005	7	8	热带低压	1002	12	1002	12	
5	1950	5012	7	27	热带低压	992	15	994	12	
6	1950	5030	10	5	台风	975	35	990	25	
7	1950	5040	11	24	强热带风暴	985	30	1003	20	
8	1951	5105	5	13	热带低压	998	15	998	15	
9	1951	5112	8	1	超强台风	904	80	975	35	
10	1951	5115	8	15	强热带风暴	988	25	992	15	
11	1951	5115	8	15	强热带风暴	988	25	992	15	
12	1952	5201	6	12	台风	960	40	960	40	
13	1952	5204	7	6	强台风	973	45	985	25	
14	1952	5208	7	30	台风	980	40	990	15	
15	1952	5214	8	19	热带低压	999	15	999	15	
16	1952	5218	9	13	强热带风暴	990	30	996	15	
17	1953	5306	6	30	热带风暴	983	20	985	15	
18	1953	5315	9	2	超强台风	942	65	975	25	
19	1953	5317	9	18	强台风	970	50	985	35	
20	1954	5407	8	5	热带风暴	993	20	995	15	
21	1954	5413	8	29	超强台风	890	85	940	50	
22	1954	5427	11	6	超强台风	900	85	970	40	
23	1954	5430	11	12	超强台风	938	75	1000	15	
24	1955	5505	6	5	台风	986	35	990	25	
25	1955	5508	7	10	热带低压	995	15	995	15	
26	1955	5525	9	14	热带低压	1000	15	1002	0	
27	1957	5708	7	16	强台风	983	50	988	25	

28	1957	5711	8	20	强热带风暴	980	25	986	20
29	1957	5719	9	22	强台风	970	45	970	45
30	1957	5723	10	15	热带风暴	1000	20	1000	12
31	1958	5804	5	31	强热带风暴	985	25	985	25
32	1958	5815	8	7	台风	985	40	990	35
33	1958	5821	9	1	热带风暴	994	20	994	15
34	1958	5828	9	30	热带风暴	998	20	1004	10
35	1959	5916	9	2	热带低压	1000	12	1003	10
36	1960	6006	6	8	强台风	970	45	970	40
37	1960	6007	6	29	超强台风	950	60	980	35
38	1960	6012	8	2	热带低压	995	15	995	15
39	1960	6013	8	10	超强台风	929	65	992	9
40	1960	6018	8	15	强热带风暴	994	25	996	9
41	1960	6024	8	26	台风	975	40	1000	9
42	1961	6104	5	19	台风	975	40	975	40
43	1961	6112	7	2	热带风暴	986	20	990	10
44	1961	6115	7	19	强热带风暴	992	25	995	15
45	1961	6124	8	28	超强台风	950	65	1002	9
46	1961	6127	8	31	热带风暴	995	20	995	20
47	1961	6128	9	10	台风	980	35	985	15
48	1961	6132	9	29	台风	980	40	990	20
49	1962	6219	9	1	强台风	949	50	963	35
50	1962	6227	10	4	强台风	955	50	992	12
51	1963	6310	7	22	台风	983	35	983	35
52	1963	6320	9	15	超强台风	918	70	1002	9
53	1964	6402	5	27	台风	980	35	980	30
54	1964	6412	8	8	超强台风	925	85	972	30
55	1964	6419	9	5	强台风	960	45	960	40
56	1964	6420	9	10	超强台风	897	95	988	20
57	1964	6429	10	13	强台风	975	45	978	40
58	1965	6517	7	15	超强台风	923	75	965	35
59	1965	6519	7	22	强热带风暴	985	25	990	20
60	1965	6530	9	5	强台风	980	50	986	30
61	1965	6535	9	27	强热带风暴	980	30	980	30

62	1066	6606	_	42	72 14 14 17 E	006	20	005	30
62	1966	6606	7	13	强热带风暴	986	30	986	
63	1966	6607	7	17	台风	987	35	995	20
64	1966	6611	7	26	强台风	970	45	974	35
65	1967	6717	8	2	台风	970	35	970	35
66	1967	6722	8	11	热带低压	995	15	995	15
67	1967	6724	8	16	强热带风暴	990	25	992	20
68	1967	6726	8	21	台风	980	35	980	30
69	1967	6749	11	7	超强台风	912	65	980	30
70	1968	6817	8	21	台风	963	40	965	35
71	1968	6821	9	8	超强台风	918	70	965	40
72	1969	6907	7	28	超强台风	896	75	970	20
73	1970	7014	8	3	强热带风暴	990	25	995	15
74	1970	7017	8	9	热带风暴	990	20	998	20
75	1970	7039	10	17	超强台风	901	75	993	15
76	1971	7112	6	17	台风	978	35	980	30
77	1971	7119	7	22	超强台风	912	60	970	30
78	1971	7125	8	16	超强台风	959	60	975	40
79	1972	7208	6	27	台风	981	40	990	30
80	1972	7233	11	8	强台风	940	50	965	35
81	1973	7304	7	16	台风	975	35	975	35
82	1973	7308	8	12	台风	960	35	964	35
83	1973	7312	8	21	强热带风暴	980	30	995	15
84	1973	7315	8	29	强热带风暴	995	25	1003	15
85	1974	7405	6	7	强热带风暴	990	25	990	25
86	1974	7413	7	22	超强台风	945	60	967	45
87	1974	7420	8	12	热带风暴	988	20	995	10
88	1974	7427	9	6	强热带风暴	980	25	980	25
89	1974	7433	10	19	台风	974	40	985	35
90	1974	7439	12	1	强台风	939	50	985	25
91	1975	7510	8	13	热带风暴	985	20	985	20
92	1975	7523	10	5	台风	970	35	970	35
93	1975	7524	10	14	超强台风	900	60	970	35
94	1975	7525	10	23	台风	970	35	975	35
95	1976	7614	7	25	台风	970	35	970	35
	15/0	/014		23		3/0	ا عی	3/0	33

96	1976	7618	8	6	台风	978	35	980	35
97	1976	7620	8	24	强热带风暴	985	30	993	20
98	1976	7623	9	19	台风	975	35	975	35
99	1977	7705	7	6	热带风暴	990	20	996	12
100	1977	7708	8	2	超强台风	925	55	992	10
101	1977	7719	9	24	强热带风暴	980	30	985	25
102	1978	7805	6	25	热带低压	994	12	998	12
103	1978	7811	7	26	台风	960	40	960	40
104	1978	7818	8	27	台风	965	35	965	35
105	1978	7829	10	16	强热带风暴	975	30	995	20
106	1979	7908	7	5	强台风	955	45	985	25
107	1979	7911	8	2	超强台风	898	70	955	45
108	1979	7912	7	29	强热带风暴	975	30	995	15
109	1979	7923	9	23	强热带风暴	983	30	995	20
110	1980	8010	7	18	热带风暴	998	20	998	20
111	1980	8012	7	27	超强台风	908	60	1000	15
112	1980	8015	8	18	强热带风暴	992	30	998	15
113	1981	8107	7	6	强热带风暴	980	30	980	30
114	1981	8108	7	21	强热带风暴	987	30	998	10
115	1981	8121	9	22	超强台风	924	60	995	15
116	1981	8125	10	6	热带低压	1004	12	1004	10
117	1982	8206	6	30	热带风暴	988	20	990	20
118	1982	8209	7	17	强热带风暴	985	25	992	20
119	1982	8213	8	16	台风	971	35	1000	10
120	1983	8309	9	9	超强台风	928	60	970	45
121	1983	8315	10	13	强热带风暴	985	30	985	30
122	1984	8402	6	25	强热带风暴	970	30	972	30
123	1984	8404	7	8	强热带风暴	980	30	980	30
124	1984	8409	8	11	热带低压	1000	15	1001	12
125	1984	8412	8	20	强热带风暴	975	30	985	25
126	1984	8416	8	31	强热带风暴	980	30	992	10
127	1985	8507	6	25	台风	958	40	985	17
128	1985	8513	8	10	热带低压	994	15	997	15
129	1985	8517	8	21	强热带风暴	980	25	999	10

420	1985	8522	9	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	965	40	965	40
130	1985	8525	9	21	台风	980	25	980	25
131					强热带风暴				
132	1986	8604	5	20	强热带风暴	995	25	995	15
133	1986	8607	6	24	热带低压	996	15	1000	15
134	1986	8609	7	11	超强台风	900	65	985	20
135	1986	8624	10	18	台风	960	40	975	35
136	1987	8703	6	18	台风	982	35	990	25
137	1987	8723	10	28	超强台风	910	70	1008	10
138	1988	8805	6	29	强热带风暴	990	25	995	20
139	1988	8807	7	20	超强台风	945	55	998	15
140	1989	8904	5	20	台风	970	35	970	35
141	1989	8910	7	18	超强台风	920	60	960	40
142	1990	9006	6	18	强热带风暴	980	30	985	25
143	1990	9024	9	10	热带低压	1000	12	1001	10
144	1991	9108	7	20	超强台风	930	55	995	15
145	1991	9109	7	24	台风	975	35	980	30
146	1991	9113	8	15	强台风	960	45	965	40
147	1991	9118	9	7	强热带风暴	980	30	990	12
148	1992	9207	7	17	强热带风暴	988	25	988	25
149	1992	9208	7	22	台风	975	35	980	30
150	1992	9216	9	6	超强台风	925	55	995	12
151	1993	9303	6	27	超强台风	920	60	970	35
152	1993	9312	8	20	台风	970	35	970	35
153	1993	9318	9	14	强台风	945	50	1000	15
154	1993	9319	9	17	台风	975	35	975	35
155	1993	9320	9	25	台风	965	40	965	40
156	1993	9325	10	13	热带低压	1006	15	1008	15
157	1993	9327	11	4	强台风	950	45	992	25
158	1994	9403	6	8	强热带风暴	980	30	985	25
159	1994	9404	6	25	热带风暴	990	20	992	20
160	1994	9405	7	4	热带风暴	990	20	990	20
161	1994	9411	7	21	热带低压	998	15	998	12
162	1995	9505	8	12	强热带风暴	980	30	990	23
					强台风				25
163	1995	9509	8	31	四口八	945	50	985	23

164	1995	9511	9	7	热带风暴	995	20	998	15
165	1995	9515	10	3	台风	975	33	975	33
166	1995	9516	10	13	强热带风暴	985	25	998	18
167	1996	9613	8	11	热带低压	995	15	1002	10
168	1996	9617	9	9	强台风	935	50	935	50
169	1997	9713	8	2	强热带风暴	968	30	970	30
170	1998	9804	8	10	强热带风暴	985	25	985	25
171	1999	9904	6	7	台风	960	40	980	25
172	1999	9913	8	22	台风	975	33	985	25
173	1999	9918	9	16	强热带风暴	975	30	980	30
174	1999	9922	9	26	强热带风暴	985	25	1002	12
175	2000	0005	6	18	热带低压	1002	15	1002	15
176	2000	0008	7	17	热带低压	995	15	996	15
177	2000	0017	9	1	强热带风暴	980	28	985	25
178	2001	0103	7	1	台风	970	35	970	35
179	2001	0104	7	6	台风	965	35	980	25
180	2001	0107	7	25	台风	975	33	975	33
181	2001	0116	9	1	热带风暴	985	20	1001	10
182	2001	0118	9	20	台风	960	40	1002	15
183	2002	0217	8	19	强热带风暴	980	30	980	30
184	2002	0221	9	11	强热带风暴	985	25	985	25
185	2002	0223	9	28	热带风暴	992	23	1002	12
186	2003	0309	7	24	强台风	945	50	950	45
187	2003	0315	9	2	强台风	950	45	988	25
188	2004	0412	7	16	热带风暴	990	23	1002	15
189	2004	0420	8	26	台风	960	40	995	12
190	2006	0602	6	29	热带低压	998	15	998	15
191	2006	0606	8	3	台风	970	35	975	33
192	2007	0707	8	9	强热带风暴	980	30	995	20
193	2008	0802	4	19	台风	960	40	990	23
194	2008	0807	6	25	强台风	950	45	990	23
195	2008	0810	8	6	强热带风暴	980	25	980	25
196	2008	0813	8	22	台风	960	40	980	28
197	2008	0816	9	23	强台风	940	50	940	50

198	2008	0819	10	4	热带风暴	998	18	1000	15
199	2009	0904	6	26	热带风暴	988	23	995	16
200	2009	0907	7	18	台风	965	38	975	33
201	2009	0908	8	4	强热带风暴	972	28	975	28
202	2009	0916	9	14	台风	960	40	960	40
202	2010	1003	7	22	台风	970	35	970	35
203	2010	1003	9	2	强热带风暴	985	28	998	15
205	2010	1012	9	20	超强台风	935	52	1000	16
206	2010	1012	10	10	热带低压	1002	15	1002	12
207	2011	1107	6	22	热带风暴	986	20	992	20
207	2012	1207	6	29	热带风暴	985	23	985	23
209	2012	1209	7	23	强台风	960	45	960	45
211	2012	1214	8	17	台风	968	38	968	38
211	2013	1306	7	2	强热带风暴	972	30	980	25
213	2013	1311	8	14	超强台风	925	60	955	42
214	2013	1320	9	22	超强台风	915	60	975	33
215	2014	1417	9	8	热带低压	1000	15	1000	15
216	2015	1510	7	9	强台风	955	42	985	18
217	2015	1523	10	4	超强台风	935	52	945	48
218	2016	1601	5	27	热带低压	998	15	998	15
219	2016	1606	8	2	台风	970	35	985	23
220	2016	1610	8	16	热带风暴	980	23	994	13
221	2016	1624	10	21	超强台风	905	68	970	35
222	2017	1703	6	12	强热带风暴	980	30	988	25
223	2017	1708	7	23	热带风暴	995	20	1000	15
224	2017	1714	8	23	超强台风	935	52	935	52
225	2017	1715	8	27	强热带风暴	980	30	980	30
226	2017	1717	9	4	强热带风暴	990	25	1002	13
227	2017	1723	10	15	强台风	955	42	960	40
228	2018	1805	6	7	热带风暴	990	23	995	18
229	2018	1810	7	23	热带风暴	988	23	994	15
230	2018	1819	8	10	强热带风暴	982	28	998	15
231	2018	1826	9	16	超强台风	910	65	950	48
232	2018	1827	9	12	强热带风暴	990	25	992	23

5.3 大风统计特性

根据 1989-2018 年的日最大 10min 平均风速统计,园区达 6级(10.8m/s)和 7级(13.9m/s)的大风日数分别有 23 天和 3天。6级以上大风主要出现在 5至 9月,占总大风日数的 82.6%。7级大风均出现在 5月,且同时伴有气压升高,气温降低和强降水的现象,可见大风主要是强对流天气影响造成。汛期时极大风速均表现有大值,这些极大风主要产生在强对流、台风等极端天气中。表 5-3 给出云浮国家气象站累年各月极大风速及出现时间,表 5-4 给出云浮国家气象站累年各风向的最大风速。

表 5-2 云浮国家气象站累年各月各级大风(10min 平均)天数(单位: d)

大风天数	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12月	年
6级以上	0	0	2	2	3	1	6	4	5	0	0	0	23
7级以上	0	0	0	1	0	0	1	1	0	0	0	0	3

表 5-3 云浮国家气象站累年各月最大极大风及出现时间

(单位: m/s)

項目	1	2	3	4	5	6	7	8	9	10	11	12	年
极大风速	12.0	12.6	19.9	27.2	23.3	21.3	21.3	28.4	26.4	16.7	16.1	13.5	28.4
出现年份	2011.1.15	2010.2.12	2014.3.31	2007.4.17	2005.5.6	2014.6.5	2016.7.26	2017.8.23	2018.9.16	2015.10.4	2008.11.7	2001.12.21	2017.8.23

表 5-4 云浮国家气象站累年各风向最大风速及出现时间 (单位: m/s)

风向	累年最大风速	最大风速出现年月
NNE	13.3	1990.9
ENE	17.3	1989.7
E	12.9	2006.8
SE	12.1	2016.7
W	11.7	1990.7
WNW	12.3	1997.8
NW	11.0	1992.3
NNW	14.0	2007.4

6 暴雨强度公式计算

在全球气候变化的背景下,极端降水事件不断增多,对工程项目的综合承灾能力也提出了更高的要求。暴雨强度公式是科学、合理地制定排水专业规划和排水工程设计的基础,根据中华人民共和国国家标准《室外排水设计规范》(GB50014-2006)规定,在进行排水工程规划设计时,雨水管网的规划设计排水量应通过当地的暴雨强度公式进行计算,因此合理编制当地的暴雨强

度公式是提高防灾减灾和防洪排涝能力的现实需要。

6.1 代表站的确定

根据《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》的要求,降雨站点应选择当地的国家气象站或区域气象站作为代表性站点,并且该站点基础资料年限在 30 年以上。云浮国家气象站目前是该地区唯一的国家气象站,该站具有 30 年以上的自记降水雨量资料,符合《室外排水设计规范》(GB50014-2006, 2014版)和《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》的站点选择原则,因此选定云浮国家气象站作为本项目的代表站。

6.2 资料来源

利用云浮国家气象站 1980 年至 2015 年的自记雨量记录,降雨历时按 5、10、15、20、30、45、60、90、120、150、180min,每年每个历时选取最大一场雨量记录。

6.3 暴雨强度公式推算

6.3.1 暴雨强度公式解释

(1) 暴雨强度公式

依据《室外排水设计规范》(GB50014-2006, 2014版),暴雨强度公式定义为:

$$q = \frac{167A_1(1+C\lg P)}{}$$

$$\frac{}{(t+b)^n} \tag{6-1}$$

式 (7-1) 中: q 为设计暴雨强度[单位: L/(s·hm2)], P 为重现期(单位: a), 取值范围 2 年~100 年; t 为降雨历时(单位: min), 取值范围为 1~180min。重现期越长、历时越短,暴雨强度就越大,而 A₁、b、C、n 是与地方暴雨特性有关且需求解的参数: A₁雨力参数,即重现期为 1 年时的 1min 设计降雨量(单位: mm); C 为雨力变动参数; b 为降雨历时修正参数,即对暴雨强度公式两边求对数后能使曲线化成直线所加的一个时间参数(单位: min); n 为暴雨衰减指数,与重现期有关。

(2) 暴雨强度的频率和重现期的计算公式 在暴雨强度频率的计算中,常用频率公式:

$$Pl = \frac{M}{\times 100\%}$$

$$N+1 \qquad (6-2)$$

式中P1为频率,N为样本总数(对于年多个样法,N=资料年限长度×4),M为样本的序号(样本按从大到小排序)。

暴雨强度重现期 P 是指相等或超过它的暴雨强度出现一次的平均时间,单位用年。对于年最大值法,重现期计算公式为:

$$P = \frac{N+1}{M} \tag{6-3}$$

重现期为 2、3、5、10、20、30、50、100 年,相对应的频率为:50%、33.3%、20%、10%、5%、3.3%、2%、1%。

6.3.2 暴雨强度公式推算步骤

暴雨强度公式推求步骤为:

(1) 建立统计样本

根据国家标准《室外排水设计规范》(GB50014-2006, 2014版)和《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》建议的"年最大值法"建立统计样本,从逐年逐分钟雨量资料中每年挑选 5、10、15、20、30、45、60、90、120、150、180min11个降雨历时的最大值作为原始数据,作为建立暴雨强度公式的统计样本。

(2) 求算各重现期暴雨强度理论值

由于设计采用的重现期(100年一遇)大于资料年限,故采用概率型分布进行拟合调整,暴雨强度公式统计中,常用的理论频率曲线有皮尔逊-III型分布曲线、指数分布曲线、经验频率曲线等,选用何种分布曲线关键是看分布曲线对原始数据的拟合程度,误差越小、精度越高的分布越有代表性,拟合精度以绝对均方误差作为判断标准。经验频率曲线由于精度不高,实际工作中一般较少采用,当精度要求较高时,国家规范推荐采用皮尔逊-III型分布曲线、指数分布曲线和耿贝尔分布曲线。根据确定的频率曲线,得出重现期、降雨强度和降雨历时三者的关系,即 P、i、t 的关系值。

首先通过暴雨强度计算系统采用皮尔逊-III型分布曲线、指数分布曲线、耿贝尔分布曲线进行拟合调整,皮尔逊-III型分布曲线拟合的绝对均方误差为 0.018 (mm/min),相对均方误差为

1.41%;指数分布曲线拟合的绝对均方误差为 0.039 (mm/min),相对均方误差为 2.88%; 耿贝尔分布曲线拟合的绝对均方误差为 0.029 (mm/min),相对均方误差为 2.13%。

可见,三种拟合方法只有皮尔逊-III型分布曲线满足拟合的精度要求,应用皮尔逊-III型分布曲线明显优于指数分布曲线和耿贝尔分布曲线,因此本项目应用皮尔逊-III型分布曲线拟合调整,具体的做法是,根据原始资料处理后所得的原始降水强度,求出 11 个降水历时序列的变差系数 Cv 和偏态系数 Cs。

$$C_{v} = \frac{1}{\bar{x}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
 (6-4)

$$C_{s} = \frac{n}{(n-1)(n-2)} \times \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{\overline{x}^{3} C_{v}^{3}}$$
 (6-5)

式(6-4)与式(6-5)中, \bar{x} 为平均值,n 为年数。根据求得的 C_s ,在离均系数表上查出频率为 99%、50%、33.3%、20%、10%、5%、3.3%、2%、1%的离均系数 Φ ,代入式(6-6)。

$$Y = (1 + \Phi \times C_v)\overline{X} \tag{6-6}$$

式中,Y 为理论降水强度, \bar{x} 为原始降水强度的平均值。

求得上述频率的理论降水强度,并绘出理论降水强度频率曲线,与原始降水强度频率曲线相比较,采用适线法,不断调整 $^{C_{v}}$ 、 $^{C_{s}}$,直至理论频率曲线与原始频率曲线拟合达最佳为止。读出此时频率为 99%、50%、33. 3%、20%、10%、5%、3. 3%、2%、1%的理论降水强度,这就是推算暴雨强度公式的基本资料($^{q'}$)。

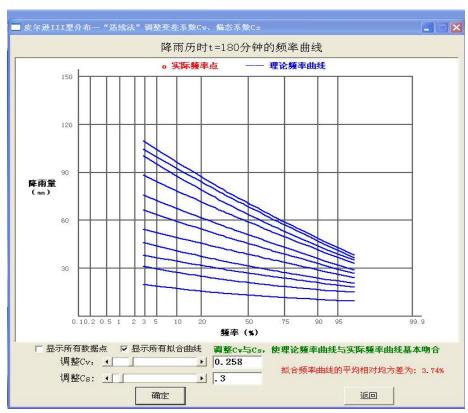


图 6-1 适线法调整频率曲线

(3) 单一重现期暴雨强度公式拟合 首先对式(6-1) 进行线性化处理:

$$q = \frac{167A}{(t+b)^n}$$
 (6-7)

式(6-7)即为单一重现期公式,通过式(6-7)分别把1、2、3、5、10、20、30、50和10年一遇等9个重现期的单一暴雨强度公式推求出来。首先推算这9个重现期暴雨强度公式的需求参数A、b、n。

用常规方法无法求解暴雨强度公式即式(6-7),将式(6-7) 两边取对数得:

$$\ln q = \ln 167 A - n \ln(t+b) \tag{6-8}$$

令 $y = \ln q, b_0 = \ln 167 A, b_1 = -n, x = \ln(t+b)$,那么式(6-8)就变为:

$$y = b_0 + b_1 x \tag{6-9}$$

式(6-9)应用数值逼近和最小二乘法,可求出 b0、b1,则 A、n 可求。但在具体计算时,由于 b 也是未知数,因此还无法应用最小二乘法求解方程。可先给定一个 b 值,在此 b 值下,再应用最小二乘法,可求得 A、n 值。将此 A、n、b 代入式(1),计算出给定 b 值的暴雨强度(q''),同时算出理论降水强度(q')与给定 b 值的暴雨强度(q'')的相关系数(r)。不断调整 b 值,用相关系数 r 作为判别标准,比较q'和q'',直至相关系数达到最佳为止,则这时的 A、b、n 为所求。这样,可将 8 个单一重现期暴雨强度公式逐个推算出来,具体参见表 6-1。

表 6-1 云浮市区单一重现期暴雨强度公式

重现期 P (年)	公 式
P=2	3313.781/(t+9.915) ^{0.744}
P=3	3307. 602/(t+9. 384) ^{0.725}
P=5	3298. 918/(t+8. 741) 0.705
P=10	3216.086/(t+7.481) ^{0.680}

P=20	3179. 513/(t+6. 543) ^{0.662}
P=30	3164.817/(t+6.079) ^{0.655}
P=50	3148.618/(t+5.533) ^{0.646}
P=100	3128. 578/(t+4. 828) ^{0.635}

(4) 区间参数公式拟合

由于上面求得的是单一重现期的暴雨强度公式,而两个单一重现期之间的暴雨强度还无法求得。如重现期为 10 年、20 年的暴雨强度可求得,但重现期为 15 年的暴雨强度则无法计算。因此引入重现期区间参数公式,以解决这个问题。应用式(6-10)

$$y = b_1 + b_2 \ln(P + C) \tag{6-10}$$

作为区间参数公式来求算区间参数值效果很好(式(6-10)中,y为A、b、n参数中的任一个,P为重现期,C为常数)。

首先把 1~100 年分为(I): 1~10 年和(II): 10~100 年 两个区间,将 A、b、n 代入(10)式中得:

$$A = A_1 + A_2 \ln(P + C_A) \tag{6-11}$$

$$b = b_1 + b_2 \ln(P + C_b) \tag{6-12}$$

$$n = n_1 + n_2 \ln(P + C_n) \tag{6-13}$$

上面三式中 A、b、n 和 P 是已知数,A1、A2、CA、b1、b2、Cb 及 n1、n2、Cn 都是未知数。根据上面求得单一重现期 P 下的 A、b、n 值,同理,利用数值逼近法和最小二乘法,可解得未知 云浮市气象公共服务中心

数 A1、A2、CA、b1、b2、Cb 和 n1、n2、Cn,从而可算得 I、II 两个区间的 A、b、n 值,将它们代入式(1),可得 1~100 年之间的任意一个重现期暴雨强度公式,从而可计算任意重现期的暴雨强度。

重现期 P	区间	参数	公 式
		n	0.751 -0.032Ln(P - 0.771)
1—10	I	b	10. 576 -1. 177Ln (P - 0. 247)
		A	19. 982 -0. 127Ln (P + 0. 999)
		n	0.699 -0.014Ln(P - 6.185)
10—100	II	b	9. 201 -0. 958Ln (P - 3. 975)
		A	19. 442 -0. 156Ln (P - 6. 737)

表 6-2 云浮市区重现期区间暴雨强度公式

(5) 总公式的推算

根据(1)式
$$q = \frac{167A_1(1+C\lg P)}{(t+b)^n}$$
将其两边取对数得:

$$\ln q = \ln 167 A_1 + \ln(1 + cLgP) - n \ln(t + b)$$
 (6-14)

令 $y = \ln q$, $b_0 = \ln 167 A_1$, $x_1 = \ln(1 + cLgP)$, $b_2 = -n$, $x_2 = \ln(t + b)$, 即得 $y = b_0 + x_1 + b_2 x_2$ 。已知 q、P、t 值,应用数值逼近法和最小二乘法解此二元线性回归方程,可求得 b_0 、 b_2 ,从而可求得 A1、n。

推算出暴雨强度总公式为:

$$q = \frac{2439.377 \times (1 + 0.399 LgP)}{(t + 8.247)^{0.691}}$$
 (6-15)

6.3.3 暴雨强度公式精度检验

为确保计算结果的准确性,需对暴雨强度计算结果进行精度检验,按国家规范(GB50014-2006,2014版)的要求,需计算重现期2~20年暴雨强度的平均绝对均方误差和平均相对均方误差,平均绝对均方误差不超过0.05mm/min,平均相对均方误差不大于5%。

平均绝对均方误差:
$$X_m = \sqrt{\frac{1}{n} \sum_{i=1}^n (\frac{R_i' - R_i}{t_i})^2}$$
 (6-16)

平均相对均方误差:
$$U_m = \sqrt{\frac{1}{n} \sum_{i=1}^n (\frac{R_i' - R_i}{R_i})^2} \times 100\%$$
 (6-17)

式 (6-16) 和式 (6-17) 中,R' 为理论降水量,R 为实际降水量,t 为降水历时,n 为样本数。

利用暴雨强度区间公式算得的重现期 2~20 年暴雨强度平均绝对方差为 0.018(mm/min); 相对均方误差为 1.41%, 满足《室外排水设计规范》(GB50014-2006, 2014 版)提出的精度要求。

利用暴雨强度总公式算得的重现期 2~20 年暴雨强度平均绝对方差为 0.032 (mm/min);相对均方误差为 2.19%,符合《室外排水设计规范》(GB50014-2006,2014版)提出的精度要求。从两种公式计算精度看,暴雨强度区间公式明显优于暴雨强度总公式,因此推荐使用暴雨强度区间公式。

6.3.4 暴雨强度计算图表

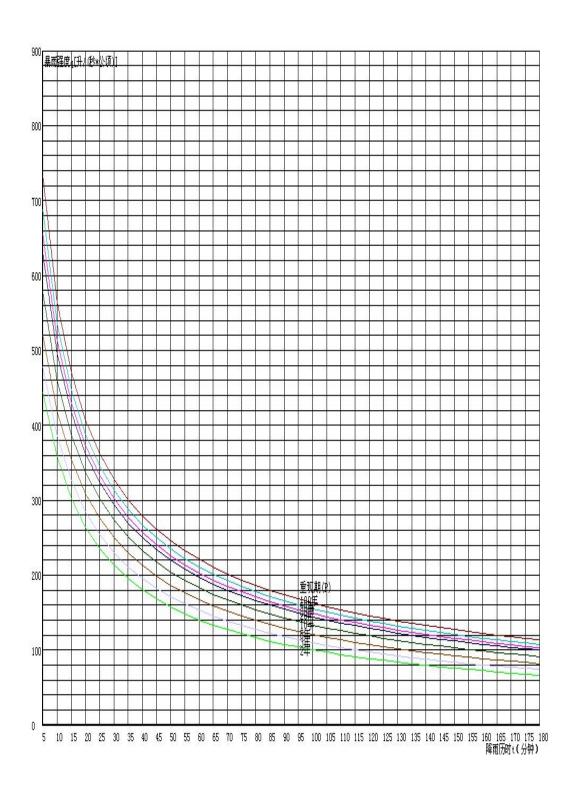


图 6-2 云浮市暴雨强度曲线图

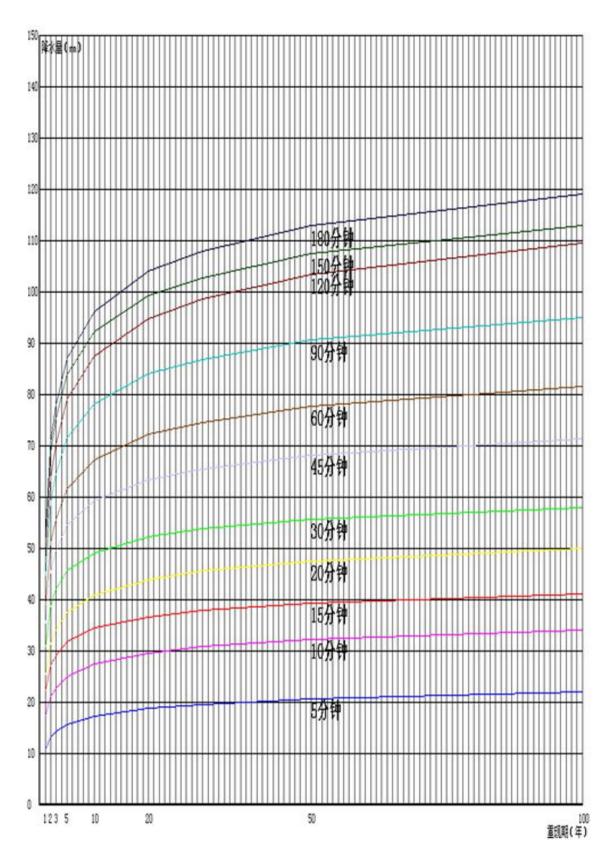


图 6-3 各历时降水量与重现期曲线图

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	559.802	27	226.113	53	152.072	79	117.567	105	97.141	131	83.464	157	73.585
2	524.457	28	221.661	54	150.299	80	116.593	106	96.517	132	83.026	158	73.258
3	493.935	29	217.409	55	148.573	81	115.638	107	95.902	133	82.594	159	72.935
4	467.275	30	213.343	56	146.892	82	114.700	108	95.296	134	82.166	160	72.616
5	443.760	31	209.451	57	145.256	83	113.781	109	94.700	135	81.744	161	72.300
6	422.844	32	205.722	58	143.662	84	112.878	110	94.111	136	81.327	162	71.986
7	404.101	33	202.145	59	142.108	85	111.992	111	93.532	137	80.915	163	71.676
8	387.196	34	198.710	60	140.593	86	111.122	112	92.960	138	80.507	164	71.370
9	371.860	35	195.409	61	139.115	87	110.268	113	92.397	139	80.105	165	71.066
10	357.877	36	192.234	62	137.673	88	109.429	114	91.842	140	79.707	166	70.765
11	345.067	37	189.177	63	136.266	89	108.605	115	91.294	141	79.313	167	70.467
12	333.282	38	186.231	64	134.892	90	107.795	116	90.754	142	78.925	168	70.172
13	322.400	39	183.391	65	133.550	91	106.999	117	90.222	143	78.540	169	69.880
14	312.315	40	180.651	66	132.239	92	106.217	118	89.696	144	78.160	170	69.591
15	302.940	41	178.004	67	130.958	93	105.448	119	89.178	145	77.785	171	69.305
16	294.199	42	175.447	68	129.705	94	104.692	120	88.667	146	77.413	172	69.021
17	286.028	43	172.974	69	128.480	95	103.949	121	88.162	147	77.046	173	68.740
18	278.369	44	170.581	70	127.282	96	103.218	122	87.665	148	76.683	174	68.462
19	271.174	45	168.265	71	126.110	97	102.499	123	87.174	149	76.323	175	68.186
20	264.401	46	166.021	72	124.963	98	101.791	124	86.689	150	75.968	176	67.913
21	258.011	47	163.846	73	123.840	99	101.095	125	86.210	151	75.616	177	67.643
22	251.972	48	161.736	74	122.740	100	100.410	126	85.738	152	75.269	178	67.375
23	246.254	49	159.689	75	121.663	101	99.736	127	85.272	153	74.925	179	67.109
24	240.831	50	157.702	76	120.608	102	99.072	128	84.811	154	74.584	180	66.846
25	235.680	51	155.772	77	119.574	103	98.418	129	84.356	155	74.248	181	66.585
26	230.780	52	153.896	78	118.561	104	97.775	130	83.907	156	73.914	182	66.327

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	606.246	27	244.260	53	165.229	79	128.349	105	106.463	131	91.772	157	81.135
2	567.152	28	239.506	54	163.335	80	127.306	106	105.793	132	91.300	158	80.783
3	533.567	29	234.966	55	161.491	81	126.284	107	105.133	133	90.835	159	80.435
4	504.357	30	230.625	56	159.697	82	125.280	108	104.483	134	90.375	160	80.090
5	478.686	31	226.470	57	157.949	83	124.296	109	103.843	135	89.921	161	79.749
6	455.919	32	222.490	58	156.246	84	123.329	110	103.211	136	89.472	162	79.412
7	435.571	33	218.671	59	154.586	85	122.380	111	102.589	137	89.029	163	79.078
8	417.258	34	215.005	60	152.968	86	121.449	112	101.976	138	88.590	164	78.747
9	400.677	35	211.482	61	151.389	87	120.534	113	101.371	139	88.157	165	78.419
10	385.582	36	208.094	62	149.849	88	119.635	114	100.774	140	87.729	166	78.095
11	371.773	37	204.831	63	148.345	89	118.753	115	100.186	141	87.306	167	77.773
12	359.086	38	201.688	64	146.876	90	117.885	116	99.607	142	86.887	168	77.455
13	347.383	39	198.657	65	145.442	91	117.033	117	99.034	143	86.473	169	77.140
14	336.548	40	195.733	66	144.041	92	116.194	118	98.470	144	86.064	170	76.828
15	326.484	41	192.908	67	142.671	93	115.371	119	97.914	145	85.660	171	76.519
16	317.108	42	190.179	68	141.332	94	114.560	120	97.364	146	85.260	172	76.213
17	308.348	43	187.540	69	140.023	95	113.764	121	96.822	147	84.864	173	75.910
18	300.143	44	184.987	70	138.742	96	112.980	122	96.288	148	84.473	174	75.609
19	292.439	45	182.514	71	137.488	97	112.209	123	95.760	149	84.086	175	75.312
20	285.189	46	180.119	72	136.261	98	111.451	124	95.239	150	83.703	176	75.017
21	278.353	47	177.797	73	135.060	99	110.704	125	94.724	151	83.324	177	74.725
22	271.894	48	175.546	74	133.884	100	109.969	126	94.216	152	82.950	178	74.436
23	265.781	49	173.361	75	132.732	101	109.246	127	93.715	153	82.579	179	74.149
24	259.985	50	171.239	76	131.603	102	108.534	128	93.220	154	82.212	180	73.865
25	254.481	51	169.178	77	130.497	103	107.833	129	92.731	155	81.849	181	73.584
26	249.246	52	167.176	78	129.412	104	107.143	130	92.248	156	81.490	182	73.305

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	662.836	27	265.087	53	180.309	79	140.739	105	117.206	131	101.372	157	89.882
2	618.707	28	259.980	54	178.278	80	139.619	106	116.485	132	100.864	158	89.502
3	581.071	29	255.104	55	176.302	81	138.520	107	115.775	133	100.362	159	89.125
4	548.533	30	250.444	56	174.377	82	137.442	108	115.074	134	99.865	160	88.753
5	520.078	31	245.985	57	172.503	83	136.384	109	114.385	135	99.375	161	88.384
6	494.949	32	241.713	58	170.677	84	135.346	110	113.705	136	98.890	162	88.018
7	472.567	33	237.615	59	168.897	85	134.326	111	113.034	137	98.412	163	87.657
8	452.487	34	233.682	60	167.161	86	133.325	112	112.374	138	97.938	164	87.299
9	434.352	35	229.903	61	165.467	87	132.342	113	111.722	139	97.471	165	86.944
10	417.881	36	226.268	62	163.815	88	131.376	114	111.079	140	97.008	166	86.593
11	402.843	37	222.770	63	162.202	89	130.427	115	110.446	141	96.551	167	86.245
12	389.051	38	219.399	64	160.626	90	129.494	116	109.821	142	96.099	168	85.901
13	376.348	39	216.149	65	159.088	91	128.578	117	109.204	143	95.652	169	85.560
14	364.603	40	213.013	66	157.584	92	127.677	118	108.596	144	95.210	170	85.222
15	353.708	41	209.985	67	156.114	93	126.791	119	107.996	145	94.773	171	84.888
16	343.568	42	207.059	68	154.678	94	125.919	120	107.404	146	94.341	172	84.556
17	334.103	43	204.229	69	153.272	95	125.062	121	106.820	147	93.913	173	84.228
18	325.245	44	201.492	70	151.897	96	124.219	122	106.243	148	93.491	174	83.903
19	316.935	45	198.841	71	150.552	97	123.390	123	105.674	149	93.072	175	83.581
20	309.120	46	196.273	72	149.235	98	122.574	124	105.112	150	92.659	176	83.262
21	301.756	47	193.784	73	147.945	99	121.771	125	104.557	151	92.249	177	82.945
22	294.802	48	191.370	74	146.683	100	120.980	126	104.010	152	91.844	178	82.632
23	288.223	49	189.028	75	145.445	101	120.202	127	103.469	153	91.444	179	82.321
24	281.989	50	186.753	76	144.233	102	119.436	128	102.935	154	91.047	180	82.014
25	276.071	51	184.544	77	143.045	103	118.681	129	102.408	155	90.655	181	81.709
26	270.444	52	182.397	78	141.881	104	117.938	130	101.887	156	90.266	182	81.406

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	751.595	27	289.583	53	197.618	79	154.961	105	129.597	131	112.508	157	100.085
2	696.734	28	284.008	54	195.427	80	153.754	106	128.819	132	111.959	158	99.673
3	650.809	29	278.691	55	193.294	81	152.570	107	128.053	133	111.416	159	99.266
4	611.704	30	273.613	56	191.218	82	151.409	108	127.298	134	110.880	160	98.862
5	577.934	31	268.757	57	189.197	83	150.269	109	126.554	135	110.350	161	98.463
6	548.424	32	264.109	58	187.227	84	149.150	110	125.820	136	109.827	162	98.068
7	522.378	33	259.655	59	185.308	85	148.051	111	125.097	137	109.309	163	97.676
8	499.188	34	255.382	60	183.436	86	146.972	112	124.384	138	108.798	164	97.288
9	478.386	35	251.278	61	181.610	87	145.913	113	123.681	139	108.292	165	96.904
10	459.603	36	247.334	62	179.829	88	144.872	114	122.988	140	107.792	166	96.524
11	442.542	37	243.539	63	178.090	89	143.849	115	122.304	141	107.298	167	96.148
12	426.965	38	239.885	64	176.392	90	142.844	116	121.630	142	106.809	168	95.775
13	412.676	39	236.363	65	174.733	91	141.856	117	120.964	143	106.326	169	95.405
14	399.513	40	232.967	66	173.113	92	140.885	118	120.308	144	105.848	170	95.040
15	387.341	41	229.688	67	171.529	93	139.930	119	119.660	145	105.376	171	94.677
16	376.045	42	226.522	68	169.980	94	138.991	120	119.021	146	104.908	172	94.318
17	365.531	43	223.460	69	168.466	95	138.067	121	118.391	147	104.446	173	93.962
18	355.714	44	220.500	70	166.984	96	137.158	122	117.768	148	103.989	174	93.610
19	346.523	45	217.634	71	165.534	97	136.264	123	117.154	149	103.537	175	93.261
20	337.898	46	214.858	72	164.115	98	135.385	124	116.547	150	103.089	176	92.915
21	329.784	47	212.169	73	162.726	99	134.519	125	115.948	151	102.646	177	92.572
22	322.136	48	209.561	74	161.365	100	133.666	126	115.357	152	102.208	178	92.233
23	314.911	49	207.030	75	160.032	101	132.827	127	114.773	153	101.775	179	91.896
24	308.074	50	204.574	76	158.726	102	132.001	128	114.196	154	101.346	180	91.562
25	301.592	51	202.189	77	157.446	103	131.187	129	113.626	155	100.921	181	91.232
26	295.437	52	199.871	78	156.191	104	130.386	130	113.064	156	100.501	182	90.904

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	834.500	27	310.751	53	212.531	79	167.207	105	140.266	131	122.100	157	108.877
2	768.483	28	304.766	54	210.201	80	165.925	106	139.440	132	121.515	158	108.439
3	714.182	29	299.062	55	207.933	81	164.668	107	138.626	133	120.938	159	108.004
4	668.588	30	293.619	56	205.727	82	163.435	108	137.824	134	120.368	160	107.575
5	629.659	31	288.418	57	203.578	83	162.224	109	137.033	135	119.804	161	107.149
6	595.962	32	283.442	58	201.484	84	161.036	110	136.253	136	119.247	162	106.728
7	566.455	33	278.677	59	199.444	85	159.869	111	135.485	137	118.697	163	106.311
8	540.361	34	274.107	60	197.454	86	158.723	112	134.727	138	118.152	164	105.898
9	517.088	35	269.721	61	195.514	87	157.598	113	133.980	139	117.614	165	105.489
10	496.179	36	265.507	62	193.621	88	156.493	114	133.243	140	117.082	166	105.084
11	477.270	37	261.455	63	191.774	89	155.406	115	132.516	141	116.556	167	104.682
12	460.072	38	257.554	64	189.970	90	154.339	116	131.799	142	116.036	168	104.285
13	444.349	39	253.796	65	188.208	91	153.290	117	131.092	143	115.522	169	103.891
14	429.910	40	250.173	66	186.486	92	152.258	118	130.394	144	115.014	170	103.501
15	416.593	41	246.677	67	184.804	93	151.244	119	129.706	145	114.511	171	103.115
16	404.266	42	243.302	68	183.159	94	150.246	120	129.027	146	114.013	172	102.732
17	392.815	43	240.039	69	181.550	95	149.265	121	128.356	147	113.521	173	102.353
18	382.145	44	236.885	70	179.976	96	148.300	122	127.694	148	113.034	174	101.977
19	372.174	45	233.832	71	178.436	97	147.350	123	127.041	149	112.553	175	101.605
20	362.832	46	230.877	72	176.929	98	146.416	124	126.396	150	112.076	176	101.236
21	354.057	47	228.013	73	175.454	99	145.496	125	125.759	151	111.605	177	100.871
22	345.796	48	225.237	74	174.008	100	144.590	126	125.130	152	111.138	178	100.509
23	338.002	49	222.544	75	172.593	101	143.699	127	124.509	153	110.677	179	100.150
24	330.635	50	219.931	76	171.206	102	142.821	128	123.895	154	110.220	180	99.794
25	323.658	51	217.393	77	169.846	103	141.957	129	123.289	155	109.768	181	99.442
26	317.040	52	214.928	78	168.514	104	141.105	130	122.691	156	109.320	182	99.092

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	878.248	27	319.920	53	218.806	79	172.312	105	144.697	131	126.076	157	112.520
2	805.433	28	313.740	54	216.414	80	170.998	106	143.850	132	125.477	158	112.070
3	746.163	29	307.852	55	214.087	81	169.709	107	143.016	133	124.886	159	111.625
4	696.803	30	302.236	56	211.821	82	168.445	108	142.193	134	124.301	160	111.184
5	654.939	31	296.872	57	209.616	83	167.204	109	141.383	135	123.723	161	110.748
6	618.897	32	291.742	58	207.467	84	165.986	110	140.584	136	123.152	162	110.316
7	587.479	33	286.831	59	205.374	85	164.790	111	139.796	137	122.588	163	109.888
8	559.802	34	282.123	60	203.333	86	163.615	112	139.019	138	122.030	164	109.464
9	535.198	35	277.605	61	201.342	87	162.462	113	138.254	139	121.478	165	109.045
10	513.155	36	273.266	62	199.400	88	161.328	114	137.498	140	120.933	166	108.629
11	493.271	37	269.094	63	197.504	89	160.215	115	136.754	141	120.393	167	108.218
12	475.225	38	265.080	64	195.654	90	159.121	116	136.019	142	119.860	168	107.810
13	458.759	39	261.213	65	193.847	91	158.045	117	135.294	143	119.333	169	107.406
14	443.662	40	257.486	66	192.081	92	156.988	118	134.579	144	118.812	170	107.006
15	429.761	41	253.891	67	190.355	93	155.948	119	133.873	145	118.296	171	106.610
16	416.910	42	250.419	68	188.668	94	154.926	120	133.177	146	117.786	172	106.218
17	404.987	43	247.065	69	187.018	95	153.920	121	132.489	147	117.281	173	105.829
18	393.890	44	243.823	70	185.404	96	152.931	122	131.811	148	116.782	174	105.444
19	383.531	45	240.685	71	183.825	97	151.957	123	131.141	149	116.288	175	105.062
20	373.833	46	237.648	72	182.280	98	151.000	124	130.480	150	115.800	176	104.684
21	364.732	47	234.706	73	180.767	99	150.057	125	129.827	151	115.316	177	104.309
22	356.171	48	231.854	74	179.285	100	149.129	126	129.182	152	114.838	178	103.937
23	348.100	49	229.088	75	177.834	101	148.215	127	128.545	153	114.365	179	103.569
24	340.476	50	226.404	76	176.411	102	147.315	128	127.917	154	113.896	180	103.204
25	333.260	51	223.798	77	175.018	103	146.429	129	127.296	155	113.433	181	102.842
26	326.418	52	221.267	78	173.651	104	145.557	130	126.682	156	112.974	182	102.484

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	878.248	27	319.920	53	218.806	79	172.312	105	144.697	131	126.076	157	112.520
2	805.433	28	313.740	54	216.414	80	170.998	106	143.850	132	125.477	158	112.070
3	746.163	29	307.852	55	214.087	81	169.709	107	143.016	133	124.886	159	111.625
4	696.803	30	302.236	56	211.821	82	168.445	108	142.193	134	124.301	160	111.184
5	654.939	31	296.872	57	209.616	83	167.204	109	141.383	135	123.723	161	110.748
6	618.897	32	291.742	58	207.467	84	165.986	110	140.584	136	123.152	162	110.316
7	587.479	33	286.831	59	205.374	85	164.790	111	139.796	137	122.588	163	109.888
8	559.802	34	282.123	60	203.333	86	163.615	112	139.019	138	122.030	164	109.464
9	535.198	35	277.605	61	201.342	87	162.462	113	138.254	139	121.478	165	109.045
10	513.155	36	273.266	62	199.400	88	161.328	114	137.498	140	120.933	166	108.629
11	493.271	37	269.094	63	197.504	89	160.215	115	136.754	141	120.393	167	108.218
12	475.225	38	265.080	64	195.654	90	159.121	116	136.019	142	119.860	168	107.810
13	458.759	39	261.213	65	193.847	91	158.045	117	135.294	143	119.333	169	107.406
14	443.662	40	257.486	66	192.081	92	156.988	118	134.579	144	118.812	170	107.006
15	429.761	41	253.891	67	190.355	93	155.948	119	133.873	145	118.296	171	106.610
16	416.910	42	250.419	68	188.668	94	154.926	120	133.177	146	117.786	172	106.218
17	404.987	43	247.065	69	187.018	95	153.920	121	132.489	147	117.281	173	105.829
18	393.890	44	243.823	70	185.404	96	152.931	122	131.811	148	116.782	174	105.444
19	383.531	45	240.685	71	183.825	97	151.957	123	131.141	149	116.288	175	105.062
20	373.833	46	237.648	72	182.280	98	151.000	124	130.480	150	115.800	176	104.684
21	364.732	47	234.706	73	180.767	99	150.057	125	129.827	151	115.316	177	104.309
22	356.171	48	231.854	74	179.285	100	149.129	126	129.182	152	114.838	178	103.937
23	348.100	49	229.088	75	177.834	101	148.215	127	128.545	153	114.365	179	103.569
24	340.476	50	226.404	76	176.411	102	147.315	128	127.917	154	113.896	180	103.204
25	333.260	51	223.798	77	175.018	103	146.429	129	127.296	155	113.433	181	102.842
26	326.418	52	221.267	78	173.651	104	145.557	130	126.682	156	112.974	182	102.484

t: 分钟; q: 升/秒/公顷

t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	1021.509	27	347.587	53	237.897	79	187.929	105	158.305	131	138.324	157	123.765
2	923.784	28	340.825	54	235.321	80	186.520	106	157.396	132	137.682	158	123.282
3	846.991	29	334.392	55	232.816	81	185.137	107	156.501	133	137.046	159	122.803
4	784.738	30	328.263	56	230.378	82	183.780	108	155.619	134	136.419	160	122.330
5	733.047	31	322.415	57	228.005	83	182.448	109	154.749	135	135.798	161	121.861
6	689.301	32	316.828	58	225.694	84	181.141	110	153.892	136	135.185	162	121.397
7	651.701	33	311.484	59	223.442	85	179.858	111	153.047	137	134.579	163	120.937
8	618.965	34	306.366	60	221.247	86	178.598	112	152.214	138	133.980	164	120.481
9	590.153	35	301.458	61	219.107	87	177.361	113	151.392	139	133.388	165	120.030
10	564.559	36	296.749	62	217.019	88	176.145	114	150.582	140	132.802	166	119.584
11	541.641	37	292.224	63	214.982	89	174.951	115	149.783	141	132.223	167	119.141
12	520.974	38	287.872	64	212.993	90	173.777	116	148.995	142	131.651	168	118.703
13	502.223	39	283.684	65	211.051	91	172.623	117	148.217	143	131.085	169	118.269
14	485.117	40	279.649	66	209.154	92	171.489	118	147.449	144	130.525	170	117.839
15	469.434	41	275.758	67	207.301	93	170.374	119	146.692	145	129.971	171	117.413
16	454.994	42	272.004	68	205.488	94	169.277	120	145.945	146	129.423	172	116.991
17	441.645	43	268.379	69	203.717	95	168.198	121	145.207	147	128.881	173	116.573
18	429.259	44	264.876	70	201.984	96	167.137	122	144.479	148	128.345	174	116.158
19	417.731	45	261.488	71	200.288	97	166.093	123	143.760	149	127.814	175	115.748
20	406.967	46	258.209	72	198.629	98	165.065	124	143.051	150	127.289	176	115.341
21	396.889	47	255.034	73	197.004	99	164.054	125	142.350	151	126.770	177	114.938
22	387.430	48	251.958	74	195.414	100	163.059	126	141.658	152	126.256	178	114.538
23	378.531	49	248.976	75	193.856	101	162.079	127	140.975	153	125.748	179	114.142
24	370.139	50	246.082	76	192.329	102	161.114	128	140.300	154	125.244	180	113.749
25	362.210	51	243.274	77	190.833	103	160.163	129	139.634	155	124.746	181	113.360
26	354.704	52	240.547	78	189.367	104	159.227	130	138.975	156	124.253	182	112.975

7 结论

7.1 项目气候可行性

综合本报告分析,气候与气象条件不会对本项目产生颠覆性的影响。因此,从气候角度分析,佛山(云浮)产业转移工业园区的建设是可行的。

7.2 园区气象要素统计特性

根据项目参证气象站—云浮国家气象站历史资料进行统计分析,年平均气压为 1001. 4hPa,年平均气温 21.8℃,年平均降水量为 1617. 3mm,年平均风速为 1. 1m/s,年平均相对湿度为 79%,年平均雾日是 27. 4d,年平均日照时数为 1647. 0h,年平均霜冻日数为 3. 2d,年平均雷暴日数为 72d。

7.3 园区历史热带气旋统计特性

以佛山(云浮)产业转移工业园中心位置为中心,300km为 半径的圆形区域为热带气旋影响评估区域,统计得到:

1949-2018 年 70 年间中心经过评估区域的热带气旋共 231 个,年平均为 3.3 个,其中热带低压 25 个 (10.8%)、热带风暴 27 个 (11.7%)、强热带风暴 60 个 (26%)、台风 54 个 (23.4%)、 强台风 26 个 (11.3%)、超强台风 39 个 (16.9%)。进入评估区域 内的热带气旋样本主要集中在 6 ~10 月份,超过了总数的 93.5%。在评估区域内的台风极端最低气压为 935hPa (9617 号强台风和 1714 号超强台风),台风极端最大 2min 平均风速为 52m/s (1714 号超强台风)。

7.4 暴雨强度公式

- (1)暴雨强度公式推求依据国家《室外排水设计规范》 (GB50014-2006,2014年版)和《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》推荐的方法,采用了气象部门已业务化运行的暴雨强度计算系统,计算过程规范,计算结果误差满足规范要求。
- (2)本项目采用云浮国家气象站 1980年1月~2015年12月份近 36年各个历时暴雨数据,由气象部门已业务化运行的"降水自记纸彩色扫描数字化处理系统"对原始数据进行信息化处理,数据精度高,能准确实现"不漏场次、不漏最大值"的挑选降雨场次的原则,统计样本准确可靠。
- (3) 在气候变化的背景下,各地极端降水特点不断变化,建议每10年对暴雨强度公式进行修编。

8气象灾害防御措施与建议

园区也是我省暴雨多发地区,极端降水量较大,要做好排水防涝的设计和建设工作。

在运营阶段,应加强防风、防涝、防雷等工程设施建设,提

高经营场所、设施设备、机械装置等的防灾抗灾能力。与气象主管机构应当建立信息共享机制,实现预报预警信息、灾情信息等内容的互联互通。确定气象灾害应急管理人,并报当地气象主管机构,气象灾害应急管理人应当具备一定的气象灾害风险管理能力。建立灾害性天气发生期间的值班制度,并落实值班人员的岗位责任。

8.1 暴雨灾害应对措施

- (1) 按国家标准《室外排水设计规范》和暴雨强度计算结果进行项目工程区域的排水规划和设计。
- (2)针对雨涝灾害严重区域和存在雨涝灾害隐患的区域,加强雨涝灾害防御,包括提高河道堤防、排洪管道标准,加强水浸黑点的治理等,对高风险区域做出重点应急防御部署,提升防灾减灾效率。
- (3)园区全年各月均有可能出现暴雨,其中在 4-9 月出现机会较多。但在全球变暖、极端天气气候事件多发的背景下,非汛期同样可能出现极端的强降水,除了在汛期做好暴雨防御工作之外,非汛期也需要警惕暴雨发生的可能,避免因防灾减灾意识松懈带来风险隐患。
- (4)加强气象灾害综合风险管理,探索建立巨灾保险等气象灾害风险转移分担机制,提高抗风险能力。

8.2 大风灾害应对措施

针对台风、强对流、雷雨大风致灾特点,提出大风风险应对对策。

- (1)园区为我省雷雨大风、强对流和台风灾害多发地区,累年最大风速和极大风速均为雷雨大风、强对流和台风天气影响造成,并且在园区附近的都杨自动气象观测站出现过 44.3 米/秒 (14级)极大风,因此建议园区工程及配套附属设施的抗风设计按国家相关规范进行设计和建设。
- (2) 普及台风预警信号及发布知识,针对台风灾害制定相关预警措施。优化调整台风灾害预警发布渠道,保证人员的安全转移和避险。
- (3)加强台风灾前建设工地等重要风险源检查。在较强台风过境时,要提前停止户外作业,拆除建筑工地的高空危险物,避免被台风吹落砸伤砸死行人。同时,应安排建筑工人及时撤离简易工棚,转移到安全场所避风。要最大限度地避免因台风倒损建筑设施所造成的人员伤亡。特别要重视对危旧住房、厂房、工棚、围墙、临时建筑、在建工程、市政公用设施、游乐设施、各类吊机、施工电梯、脚手架、电线杆、树木、广告牌、铁塔等风险点的防台措施,并加强对山体滑坡、泥石流等次生灾害的预报预警。
- (4)加强防范台风外围环流引发的龙卷风等强对流天气。 在台风影响期间特别是台风登陆前后,各区都要特别注意防范台 风外围环流引发的龙卷风等强对流天气的袭击。2006年8月4

- 日,受"派比安"外围环流影响,佛山市南海区、三水区受龙卷风袭击,清远、高要、南雄等地也受到龙卷风袭击,龙卷风共导致佛山市死亡10人。2011年4月17日,云浮市北部(沿西江)局部地区出现了严重雷雨大风,都杨杨柳站录得44.3米/秒(14级)级大风,是云浮市目前的极大风速记录,在云浮西江沿岸地区造成了严重的损失。此次4.17过程,在佛山地区也造成了严重的影响。2015年10月4日,受超强台风"彩虹"外围环流影响,佛山市顺德区、广州市番禺区部分镇街出现龙卷风,造成7人死亡、214人受伤,直接经济损失约10.5亿元。由于台风外围环流引发的龙卷风等极易造成群死群伤和严重经济损失,其危害极大。因此,要注意加大宣传力度,采取相关防范措施。
- (5)目前气象部门对于台风、强冷空气过程带来的大风天气预警准确率较高,但对于强对流天气引发的大风预警准确率仍只有60%左右,预警提前量仅约半小时。而且强对流天气带来大风具有突发性强、破坏力大的特点,预报预警难度非常大。因此,当园区内部及周边区域出现雷雨大风、龙卷、冰雹等强对流天气时,即便气象部门未发布雷雨大风预警信号,也应当立即停止户外作业,并采取积极防御措施,避免大风天气造成人员伤亡。
- (6) 完善危险化学品环境风险防控体系。2015年10月4日,受超强台风"彩虹"影响,位于湛江市霞山区临港工业园内的富多液化石油气服务有限公司3个储罐共800多吨液化石油气同时出现泄漏,其周边还有10多家危化品工厂。如果发生爆炸,该公司所处霞山区一半将会被夷为平地,后果不堪设想。幸而消

防官兵及时妥当地进行处置,危情被解除。在台风防御中,要特别加强对危化品物质运输、生产、使用、储运及废弃全过程的风险防范。针对重大危险源,要定时进行重点排查。要建设危险化学品"生产一运输一储藏"相结合的环境风险动态监控体系,重点防护江河沿岸、饮用水水源地等环境敏感区域危化品生产和经营单位。

- (7)强化内涝灾害风险防控。台风带来的暴雨极易使园区 出现内涝,从而造成人员伤亡、交通堵塞等严重后果。因此,内 涝风险防控是防台工作的一个重要内容。
- (8) 完善台风灾害风险评估机制,建立台风灾害风险转移 分担机制,做好台风巨灾保险的试点推广,提高企业抗风险能力。

8.3 高温灾害应对措施

- (1) 高温带来的灾害主要集中体现在安全生产和人员中暑方面,要因地制宜制定高温天气应急预案。
- (2)对户外或者高温条件下的作业人员,以及老、弱、病、幼人群,要重点做好应急防御部署。供电、供水、卫生、交通运输等部门要做好高温防御措施。车辆制造企业要提高车辆防御高温能力。
- (3)高温季节要严防危险化学品、烟花爆竹事故的发生。 各级安全监管部门和各有关部门要加强危险化学品生产、储存、 经营、运输、使用和处置废弃等各环节的安全监管,切实加强建 筑施工、民爆器材、矿山等其他行业和领域的安全监管,排查隐

患。

(4)高温季节还应预防家庭电器火灾。高温使空调、电风扇、冰箱等用电量增加,电气设备线路超负荷运转,容易发生短路烧毁电机着火,相关部门加强科普宣传,提高居民安全用电意识。此外,要注意加强森林火灾火情监测预警。

8.4 雷电灾害应对措施

- (1)建筑物采用钢筋混凝土框架结构时,在建筑物屋面及顶部安装接闪带(网)、接闪杆作防直击雷接闪器,利用建筑物的柱中主钢筋作防雷引下线,地梁及基础钢筋作接地装置。园区内大部分屋顶为金属板屋面,电场线会在这些屋顶的屋角位置发生畸变和挤压,电场强度也会变大,为带电云层放电创造了条件,金属屋面要做好等电位连接。建筑物附近布设的电源线、视频监控、消防报警、安防设备等各种信号线容易遭受雷击产生危险高电压,造成人身财产损失。所以,线路应在进入建筑物前用埋地电缆或穿金属管屏蔽埋地引入,并在进入建筑物时与建筑物的防雷装置相连。各仪器设备的金属外壳及基座应就近与防雷接地装置可靠连接,连接点不应少于两处。设备机房等弱电设备宜放在建筑物底层中心部位,并远离外墙结构柱,设备放置于顶层时建议加装屏蔽网格。突出屋面的非金属物,冷却塔、通风口等不在天面接闪器有效保护范围内时,应采取避雷短针加以保护。
- (2)做好防雷装置的维护,防雷装置的维护可分为周期性维护和日常性维护两类。周期性维护宜每年定检一到两次,且适宜在非汛期开展。日常性维护应在每次雷暴之后进行。检查外部

防雷防雷装置的电气连续性,若发现有脱焊、松动和锈蚀等,应进行相应的处理。检查内部防雷装置和设备(金属外壳、机架)等电位连接的电气连续性,若发现连接处松动或断路,应及时修复。检查浪涌保护器的运行情况:有无接触不良、漏电流是否过大、发热、绝缘是否良好、积尘是否过多等。

- (3) 遇有雷雨天气,特别是当闪电临近时,管理人员应当提醒、督促施工人员马上停止作业,进入安全区域。室外施工人员应该及时躲入建筑物内,不宜停留在无防雷措施的车库、工棚,也要尽量远离大树和高压线等物体,防止遭受直接雷击。
- (4) 雷雨天气施工时,施工人员不要肩扛金属材料和潮湿的木料在建筑物外围或建筑物顶部、高处行走。
- (5) 闪电时施工人员不要靠近金属水管、暖气管道及配电箱等与室外有电气连接的金属设施,不要停留在门窗处。
- (6) 外围人员雷雨时不要在孤立的大树、高压输配电铁塔、 高大的广告牌下行走或停留, 防止接触电压或跨步电压的伤害。
- (7) 有合格防雷装置的建筑物属于防雷相对安全区域。雷闪时所有施工现场的外部人员应及时躲避到建筑物内部。
- (8)在室内最简易直接的防雷方法,是拔下所有电源插头, 也不失为一种实用的应急措施。

9 专家评审意见

《佛山(云浮)产业转移工业园区域气候可行性论证技术报告》 专家评审意见

2020年12月10日,佛山(云浮)产业转移工业园管理委员会委托云浮市气象公共服务中心在云浮市气象局召开了《佛山(云浮)产业转移工业园区域气候可行性论证技术报告》专家评审会,与会专家听取了项目组的技术报告,审查了相关材料,经过质询和讨论,形成如下意见:

- 1. 云浮市气象公共服务中心按照合同要求完成了《佛山(云浮) 产业转移工业园区域气候可行性论证技术报告》。
 - 2. 该报告编制符合气候可行性论证相关规范。 专家组一致认为: 同意通过评审。

专家评审组成员(签字):易爱人支法也是不知识。